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Abstract 

This paper deals with the study of the existence of positive solutions for a class 

of nonlinear higher-order fractional differential equations. The results are 

established by applying Krasnoselsk'ii fixed point theorem and the well-known 

Guo-Krasnoselskii fixed point theorem in cone. Two examples are given to 

illustrate our results. 
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1. Introduction 
Fractional differential equations have recently proved to be the best tools in 

engineering and scientific disciplines as the mathematical modelling of systems 

and processes in the fields of physics, chemistry, aerodynamics, electrodynamics 

of complex medium. 

The fractional calculus theory is a mathematical analysis tool applied to the 

study of integrals and derivatives of arbitrary order, which generalizes the 

classical notions of differentiation and integration. Many studies of fractional 

calculus and fractional differential equations have involved different derivatives 

such as Riemann--Liouville, Caputo, Hadamard and Grunwald--Letnikov,.... 

The theory of boundary value problems for nonlinear fractional differential 

equations belong to the important issues for the theory of fractional differential 

equations and need to be explored while numerous applications and physical 

manifestations of fractional calculus have been found and some existence results 

for nonlinear fractional boundary value problems was established by the use of 

techniques of nonlinear analysis such Banach fixed point theorem, Leray-

Schauder theory, etc, see  ]2015,13,104,2[ −−  . 
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By means of fixed point theorem for the mixed monotone operator, S. Zhang  

]21[   studied the existence, multiplicity and nonexistence of positive solutions 

for the following higher order fractional boundary value problem 
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B. Ahmed and Juan J. Nieto   1   , studied some existence results in Banach 

space for nonlocal boundary value problem involving a nonlinear differential 

equation of fractional order  q   given by 
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Where,  ( ,,1 mmq −    ,Nm    2m  ,  Dc   is the Caputo fractional derivative 

and    EE →1,0:f   is continuous. 

 

Motivated by the above mentioned works and and other works, we discuss in 

this paper the existence and the positivity of solutions for the following 

nonlinear higher-order fractional boundary value problem  
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where:  ( )i      ),,1,0( ++ RRCf    0,    0 1.   

 ( )ii    

+0
D   is the standar Riemann-Liouville fractional derivative of order 

,1 nn −     .3n   

 

The remaining part of the paper is organized as follows. In Section 2, we recall 

some basic properties and introduce some new lemmas which will be used later. 

the existence of solutions is obtained in Section 3. In section4, we give some 

properties of Green's function, and then we study the existence of positive 

solutions. In Section 5, two examples are given to demonstrate the application of 

our main results. 

 

1. Preliminaries 
Let us recall some basic definitions on fractional calculs and some important 

preliminary lemma. 

Let  X   be the Banach space of continuous functions   ,1,0C   endowed with the 

norm  
 

( ).max
1,0

tuu
tX 

=   

 

Definition 1.   The fractional integral 
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where  0  , is called Riemann-Liouville fractional integral of order  ☺  of a 

function  ( ) R,0: →+f   and  ( ).   is the gamma function defined by 
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 Definition 2.  The Riemann-Liouville fractional derivative of order  0  , of a 

continuous function  ( ) R,0: →+f   is given by 
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 ( ).   is the gamma function, provided that the right side is point-wise defined on  

( )+,0   and    ,1+= n        stands for the greatest integer less than  .   

 

 Lemma 3.   11    Let  ,0,     ( ),1,01Lf    then       
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The following two lemmas can be found in   .14,9   

       

 Lemma 4.   11    Let  0   and  ( ) ( ),1,01,0 1LCu    then fractional differential 

equation 
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as solution. 

 

Lemma 5.   12    Assume that  ( ) ( )1,01,0 1LCu    with a frational derivative of 

order  0   that belongs to  ( ) ( ).1,01,0 1LC    Then 
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 Lemma 6.   14    For Riemann-Liouville fractional derivatives, we have 
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where   ,1,0Cf     ,       are two constants with  .0   

       

 Lemma 7.  Let  11 −   and   ,1,01Ly   then the problem 
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has a unique solution 
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The proof is complete. 

     

2. Existence results 
Now we state a known result due to Krasnoselskii, which is needed. 

       

 Theorem 8.   3     kiiKrasnosels(    fixed    intpo    )theorem   Let  X   be a closed 

convex and nonempty subset of a Banach space  E  . Let  A   and  B   be two 

operators such that 

 .1    ,XByAx +   whenever  ., Xyx    

.2    A   is compact and continuous. 

 .3    B   is a contraction. 

Then there exists  Xz   such that  .BzAzz +=   
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 Theorem 9.  Assume that  11 −   and there exists a nonnegative function  
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Hence, if  ,12 tt →   then  ( ) ( ) .012 →− tAutAu   Then  A   is equicontinuous and so, 

by Arzela-Ascoli theorem, we deduce that  A   is compact on  rB  . So the 

operator  A   is completely continuous. Thus, by  Theorem   8  , problem  )1.1(   

has at least one solution in  X  . The proof is complete. 

     

3. Positive results 

Now we state a known result due to Guo-Krasnoselskii, which is needed to 

prove the existence of positive solution to the posed problem .   
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t

dssysttsttu
t

t 11
1

111

0
1

1 −
−

−−−
−


+−+−−


= 







 

 

( )( )
( ) ( )  ( )dssyss

t 111

01

1

1
1

−−−

−

−

−−−
−

+ 












 

 

( )( )
( ) ( ) .1

1

11
1

1

1

dssys
t −−

−

−

−
−

+ 










 

And, that is equivalent to 

( ) ( ) ( ) ( ) ( ) .,
1

,
1

01

1
1

0
dssysG

t
dssystGtu 








 −

−

−
+=  

The proof is complete. 

         

 Lemma 12.   ( )stG ,   is strictly increasing in the first variable. 

 

 Proof.   In the case,  :ts    

( )
( )

( ) ( )  ( ).,
1

, 1

111 stGststtstG =−−−


=
−−− 

  
In the case,  :st    

( )
( )

( ) ( ).,
1

, 2

11 stGsttstG =−


=
−− 


 

It is easy to check that  ( )stG ,1   is strictly increasing on   1,s   and,  ( )stG ,2   is 

strictly increasing on   .,0 s   
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For:  stt 21,   and  ,21 tt    we have  ( ) ( )stGstG ,, 2212   . 

For:  21, tts    and  ,21 tt    we have  ( ) ( )stGstG ,, 2111   . 

Then, we obtain:  ( ) ( )stGstG ,, 21   . 

In the case,  21 tst    and  ,21 tt    we have 

( ) ( ) ( ) ( )stGssGssGstG ,,,, 211212 =  

We claim that  
( ) ( ).,, 2112 stGstG   

In fact, if  ( ) ( )stGstG ,, 2112 =   then, ( ) ( ) ( ) ( )stGssGssGstG ,,,, 211212 ===  , and from 

the monotonicity of  1G   and  ,2G   we have  ,21 tst ==   which contradicts with  

.21 tt    This fact implies that  ( ) ( ).,, 21 stGstG    The proof is complete. 

                            

 Lemma 13.   The function  ( )stG ,   defined by  ( )2.3   satisfies the following 

properties 

 ( )i    ( ) 0, stG   and  ( )     ),1,01,0(, + RCstG  . 

 ( )ii   If  ,1,, st    ,0   then 

( ) ( ) ( ),
1

, 11

1 sGstGsG


  −  

where  ( ) ( ) ( ) .1
1

1
1

−

−=





sssG   

      

 Proof.   ( )i   The continuity of  G   is easily checked. For  10  st  , it is 

obvious that 

( )
( )

( )
.0

1
,

1
1




−
=

−
−






ts
stG  

In the case,  ,10  ts   we have 

( )
( )

( ) ( )  ( ) ( )
( )

.01
1

,

11

11
1 



−−−
=−−−


=

−−

−−
−






 sttst

sttsstG  

 ( )ii   

If  ,10  st    

( )
( )

( ) ( ).1
1

, 1

11
sGtsstG −


= −− 


 

 

If  10  ts  , we have 

( )
( )

( ) ( ) ,1
1

,
111 −−−

−−−


=



sttsstG  

then 

( ) ( )  .1,0,  ,
1

, 1  tssG
s

stG  

Consequently 

( ) ( )    .1,0 ,1,  ,
1

, 1  tssGstG 

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Now we look for lower bounds of  ( )., stG   If  ,10  st    

( )
( )

( )
( )

( ) ,1
1

1
1

,
1111 −−−− −


−


=




sstststG  

then, 
( ) ( )  .1,0,  ,, 1

1  − tssGtstG   

If  10  ts  , we have 

( )
( )

( ) ( )  ,01
1

,
111
−−−


=

−−− 


sttsstG  

 
( ) ( )  .1,0,  ,, 1

1  − tssGtstG   

Consequently, 
( ) ( )  .1,,for ,, 1

1    − stsGstG  

The proof is complete. 

             

In this section, we discuss the existence of positive solution for fractional 

boundary value problem  ( )1.1  . We make the following additional assumptions. 

 ( )1Q    )()(),( 1 uftautf =   where  )),1,0(( + RCa   and  ).,(1

++ RRCf   

 ( )2Q    ( ) .0)(1

1

0
 dssasG   

 

 Definition 14.   We define an operator  EET →:   by 

( ) ( ) ( )( ) ( ) ( )( )  .1,0 ,)(,
1

)(, 1

1

01

1

1

1

0


−
+=  −

−

tdssuftasG
t

dssuftastGtTu 







(3.1)
 

 

The function  Xu   is a solution of the  BVP    )1.1(   if and only if  ( ) ),(tutTu =    

( ). ofpoint  fixed a is Tu   

     

 Lemma 15.   An operator is called completely continuous if it is continuous and 

maps bounded sets into precompact sets. 

              

 Lemma 16.    Let  ,Xu   the unique solution  u   of the fractional boundary 

value problem  ( )1.1   is nonnegative and satisfies  

 
( ) .min

1, Xt
utu 





 

     

 

 Proof.   Let  ,Xu     ,1,0t   it is obvious that  ( )tu   is nonnegative. We have 

( ) ( ) ( ) ( )( ) .
1

1
1

11

1

01
dssufsasGtu 









−
+

−




 

It yields 

( ) ( ) ( )( ) .
1

1
1

11

1

01
dssufsasGu

X 








−
+

−




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Hence 

( ) ( ) ( )( ) .
1

1 11

1

0

1

1
dssufsasGu

X 








−
+

−

−


  

On the other hand, for all   ,1,t   we obtain 

( ) ( ) ( ) ( )( ) .
1

1 11

1

01

1 dssufsasGtu 








−
+

−

−








  

Therefore, we have 

 
( ) .min

1, Xt
utu 





 

The proof is complete. 

      

 Definition 17.    We define the cone  K   by 

( )
 

( ) .min ,0 ,
1, Xt

ututuXuK 


=


 

 

 K   is a non-empty closed and convex subset of  .X   

          

 Lemma 18.   14  The operator defined in  )1.4(   is completely continuous and 

satisfies  ( ) .KKT    

      

The main result of this section is the following 

 Theorem 19.   Let  )( 1Q   and  )( 2Q   hold,  10 1  −   and assume that  

( ) ( )
.lim  ,lim 11

0
0

u

uf
f

u

uf
f

uu →


→
==  

Then problem  ( )1.1   has at least one positive solution in the case  

 ( )i    00 =f   and  =f    ( )rsuperlinea   or 

 ( )ii    =0f   and  0=f    ( ).sublinear   

       

 Proof.    We shall prove that problem  BVP    ( )1.1   has at least one positive 

solution in both cases, superlinear and sublinear, for this we use  Theorem   10  . 

We prove the superlinear case. Since  ,00 =f   then for any  ,0    ,01    such 

that  ( ) ,1 uuf    for  1u  . Let  1   be an open set in  E   defined by  

 ,/ 11 = yXy  

then, for any  ,1Ku   it yields  

( ) ( ) ( ) ( )( ) .
1

1
1

11

1

01
dssufsasGtTu 









−
+

−




 

Therefore 

( ) ( ) ,
1

1
1

1

1

01
dssasGuTu

XX 








−
+

−




  

If we choose  ( ) ( ) ( )  ,1
1

1

1

01

1
1

−

−
+= − dssasG




   then it yields 
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.  , 1 KuuTu
XX

 

Now from  ,=f   then  ,0M    ,0H   such that  ( ) uMuf 1    for  Hu   . 

Let  

.,2max 11









= HH



  

 Denote by  2   the open set  

 ./ 12 HyXy =  

For any  ,2Ku   have 

 
( ) ,min

1, Xt
utu 





 

 
,1 HH =   

alors,  .21    Let  2Ku   then 

( ) ( ) ( ) ( )( ) ,
1

1 111

1

0

1 dssufsasGtTu 








−
+

−

−

 






  

 

( ) ( ) ( ) ,
1

1 1

1

01

1

E
udssasGMtTu 









−
+

−

−








  

And choosing  ( ) ( ) ( )  ,1
1

1

1

01

1
1

−

−

−
+= − dssasGM 

   we get 

., 2 KuuTu
XX

 

By the first part of  Theorem   10  ,  T   has at least one fixed point in  

( ),\ 12 K   such that;  .1HyH    This completes the superlinear case of  

Theorem   19  . Case II  Now, we assume that   =0f   and  0=f   (sublinear 

case) .   Proceding as above and by the second part of  Theorem   ,10   we prove 

the sublinear case. This achieves the proof of  Theorem   19  . 

 

4. Examples 
In order to illustrate our results, we give the following examples 

    

 Example 20.  Consider the following fractional boundary value problem 

( )

( ) ( ) ( ) ( ) ( )





====

=+
+

−

+

,1  ,0000

,10,02

2
1

2
7

1

1
40

uuuuu

ttuD
u

et t

 

We have  ( ) ,,
4

2
1

tetutf
−

=   so  .31.0=   

We can verify that 

( ) ( ) .
4

,,
2
1

vu
et

vtfutf
t

−−
−

 

Then,  ( ) ,
4

2
1

tett
−

=   so  ,
4
378.0=   and  ( )

( )( ) .111

1
−



−

+


   

Therefore, by  Theorem   9  , problem  ( )1P   has at least one solution in  rB   with  
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( )( )
( )( ) ( )

.
111

12
1

1

−

−

++−−

−−









r   

      

 Example 21.   Consider the following fractional boundary value problem  

( ) ( )( )

( ) ( ) ( ) ( ) ( )





====

=+ +
+

,1  ,0000

,10,0122

0

2
7

uuuuu

teuttuD tu

 

where,  ,10 1  −    ,4=n    ,
2

7=    and 

( ) ( )( )( ) ( ) ( ),, 1

122 uftaeututf tu == +  

 ( ) ( )( ),R,1,02 += Ctta     ( ) ( ).R,R1

++Cuf   Then 

( ) ( )
.lim  ,0lim 1

0

1

0
0 ====

→


→ u

uf
f

u

uf
f

uu
 

By  Theorem   19    ( ),i   the fractional boundary value problem  ( )2P   has at least 

one positive solution. 

 

 Conclusion 22.  In the present work, we have studied the existence and the 

positivity of solutions for a higher-order fractional boundary value problem. To 

demonstrate the existence results, we transformed the posed problem into a sum 

of a contraction and a compact operator, then we applied the Krasnoselskii's 

fixed point theorem. To prove the positivity results, we expressed the Green 

function associated to the posed problem, then we apply the well-known Guo-

Krasnoselskii fixed point theorem in cone. We ended the article with two 

examples illustrating the obtain results. 
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