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ABSTRACT 
In this paper the effect of Brownian motion and Thermophoresis on boundary layer flow of MHD nanofluid flow 

over a moving surface with the influence of thermal radiation are studied  The governing partial differential 

equations are transformed into ordinary differential equations, by using a similarity transformation. The resulting 

ordinary differential equations are solved by homotopy analysis method. We observed physical insight and 

interesting aspects of the problem in presence of thermal radiation. The effect of different non-dimensional 

parameters are studied namely Prandtle number Pr, Brownian motion parameter Nb  Thermophoresis  parameter Nt, 

Lewis number Le, Hartman number Ha and Radiation parameter R are depicted graphically for velocity, temperature 

and nanoparticle concentration profile. 
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I. INTRODUCTION 
 

Heat can be transferred from one place to another by conduction in solids, convection in liquids or gases and 

radiation for which no media is required. Thermal radiation is the fundamental mechanisms of heat transfer. Heat 

generation and heat transfer are very important characteristic phenomenon involved in many engineering and 

industrial process. Olanerwaju et al [16] gave the concept of boundary layer flow of nanofluids over a moving 

surface in presence of thermal radiation. In some industries enormous heat will be generated and transferred through 

thermal radiation which may lead to many damages in process of mechanics. To reduce this thermal radiation one 

has to use some coolant in machineries.  

 

Nanofluids are made of nanoparticles (<100nm) suspended in a base fluids such as water, oil and ethylene glycol. 

Recently nanotechnology has invented nanofluids discovered by Choi’s team [4]. There exist a nano layer that acts 

as a thermal bridge between solid nanoparticles and base fluid which plays significant role in heat transfer. It can be 

used as coolant in industries resulting in energy saving. Ahmadreza [22] observed that due to their higher thermal 

conductivity nanofluids are used as liquid cooling. Azwadi Che Sidik [27] noted the applications of nanofluids and 

various minichannel configurations for heat transfer improvement. Nanofluids have heat transfer applications as a 

microelectronic fuel cells, electronic cooling, domestic refrigerator chillers, solar water heating chillers, heat pipes, 

lubrication, oil recovery, detergency and processes of soil remediation,. Husam Abdulrasool Hasan et al. [28] 

discussed the heat transfer enhancement using nanofluids for Cooling. 

 

One of the recent Bio-medical applications used to kill cancer cells is Nano-cryosurgery which is also called 

cryotherapy or cryodestruction or cryoabalation. Jing Liu and Zhong-Shan Deng [12] highlighted the advances and 

challenges in Nano-cryosurgery. De-Rui Di et al. [18] explained experimentally that cryosurgery uses freezing to 

destroy undesirable tissues by using MgO nanoparticles were adopted as a biodegradable nontoxic agent. Chandran 

and Senthil Kumar [20] explained that in surgical procedure by using cryosurgery device called cryoprobe in cancer 

treatment to destroy undesirable tumor cells. By introduction of nanoparticles into target tissue area, it improves 

image contrast and gives the guidance for Cryosurgery. 

Crane [2] investigated the concept of fluid flow over a stretching sheet. The flow of various non-Newtonian fluids 

over stretching sheet was analyzed by Liao [9]. Concept of boundary layer flow over a moving surface was 

presented by Sakiadis [1].  

 

In many physical and engineering applications such as plasma physics, packed-bed catalytic reactors, thermal 

insulation, geothermal reservoirs etc, the .applications of MHD boundary layer flow of heat and mass transfer are 
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found. Bachok et al. [13] studied boundary layer flow of nanofluid over a moving surface.  Anuar Ishak [16] studied 

the effect of radiation on MHD boundary layer flow of a viscous fluid over an exponentially stretching sheet. 

Shadloo et al. [15] applied HAM to obtain the analytical solutions in the study of a two-dimensional steady 

convective flow of a micro and engineering fluid flows such as polymeric fluids, liquid crystals, paints colloidal 

fluids. Eshetu Haile and Shankar [23, 26] studied boundary layer flow of nanofluids through a porous medium 

subjected to a magnetic field, thermal radiation, viscous dissipation and chemical reaction effects. They observed 

that Brownian effect and thermophorosis effect improves the heat transfer rate.   Nick Kaiser [8] explained that the 

Stefan-Boltzmann law gives the energy of thermal radiation emitted per unit time by a black body of a surface area 

which is directly proportional to fourth power of the temperature. 

 

II. BASIC EQUATIONS 
 

Consider the steady MHD boundary layer flow of a nanofluid in a uniform free stream in presence of thermal 

radiation  whose velocity is assumed as U, towards a moving  surface velocity is given by   Uw = λU where λ is the 

velocity parameter. λ > 0 corresponds to the downstream movement of the plate from the origin and λ < 0 

corresponds to the upstream movement of the plate.The flow being confined at   𝑦 ≥ 0.  it is assumed that y co-

ordinate is measured normal to the moving surface and uniform magnetic field is applied in ‘y’ direction. Let Tw 

and Cw are the temperature of fluid and nanoparticle fraction at wall. For free stream values are taken to be 𝑇∞ and 

𝐶∞ . Tiwari and Das [11] proposed the nanofluid model with Boussinesq and boundary layer approximation. The 

geometry of flow is shown in figure1. Continuity, momentum and energy equation for the steady MHD boundary 

layer flow of a nanofluid past a moving semi infinite flat plate in a uniform stream in presence of thermal radiation 

are given by 

 

 
Figure1: Physical model and coordinate system 
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where u is the velocity component along the x-axis, v is the velocity component along the y-axis,  ν is the  kinematic 

viscosity coefficient, k  is the  thermal conductivity, 𝑞𝑟 radiative heat flux, B0 is the  uniform magnetic field strength 

of the base fluid, σ is the  electrical conductivity of the base fluid, τ is the  ratio of the nanoparticle heat capacity and 

the base fluid heat capacity, 𝑞𝑤 is the heat flux , 𝑞𝑚 Mass flux, α = k/(𝜌𝑐)𝑓 is the thermal diffusivity of the fluid. 𝐷𝐵 

the Brownian diffusion coefficient, 𝐷𝑇  the Thermophoresis diffusion coefficient,  
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The associated boundary conditions are taken as 

𝑣 =  0, 𝑢 =  𝜆𝑈, 𝑇 =  𝑇𝑊 , 𝐶 = 𝐶𝑊  𝑎𝑡 𝑦 =  0                                                                                        (5) 

 

𝑈 → 𝑈,   𝑇 → 𝑇∞, 𝐶 → 𝐶∞ 𝑎𝑠 𝑦 → ∞.                                                                                                  (6)  

 

 By using Rosseland diffusion approximation [5, 6, 8] the radiative heat flux qr is given by 

  𝑞𝑟  =   
 −4𝜎∗ 

3𝐾𝑠

𝜕𝑇4

𝜕𝑦
 ,                                                                                                                                        (7) 

 

Where 𝜎∗and 𝐾𝑠 are the Stefan-Boltzman constant and the Rosseland mean absorption coefficient respectively. We 

assume that the temperature differences within the flow are sufficiently small such that T4 may be expressed as a 

linear function of temperature 

 𝑇4 ≈  4𝑇∞
3 𝑇 –  3𝑇∞

4.                                                                                                                                  (8) 

 

Using (7) and (8) in the last term of equation (3), we obtain 
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To reduce the governing equations into a system of ordinary differential equations, we introduce the following 

Similarity transformations. 
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where   𝜙(𝜂), 𝜓(𝜂) and   𝜉(𝜂) are the dimensionless stream function, temperature, and nanoparticle concentration 

respectively and η is the similarity variable. 

The stream function 𝛹  is defined as  
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 .                                                                                                           (12) 

 

Using similarity transformation and associated boundary conditions, the continuity equation is identically satisfied. 

Momentum equation and energy equation reduces to ODE. 

The governing coupled non linear equations for this problem are  
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 ψ (0) = 1, ψ → 0 as η → ∞,                                                                                                  (17)       
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Nb   is the Brownian motion parameter, Nt is the Thermophoresis parameter, 𝜏𝑤 is the Shear stress, R the Radiation 

parameter, Pr the Prandtl number, Le Lewis number, Ha the Hartman number   

 

Limiting case: Stanford Shately and Jagadish Prakash [24] in which spectral relaxation method is applied directly to 

ODE.  Eshetu Haile and   Shankar   B [23, 26] in which shooting technique along with the fourth order Runge-Kutta 
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integration scheme method is applied directly to non linear ODE.  But here we applied semi analytical method HAM 

to ODE directly, which exactly matches with earlier result    

 

III. METHODOLOGY   
 

Homotopy Analysis Method for nonlinear boundary value problems are discussed in [10, 21]. 

 

The region of convergence and the rate of convergence can be adjusted by varying auxiliary linear operator L, 

auxiliary parameter h and initial solution. Liao [10] determined the optimal value of h involves plotting the h-curves 

of the solution. We can except to see the horizontal over the range for which the solution converges. In figure 2 we 

have plotted  ϕ ′′(0) against auxiliary parameter h. similarly we can obtain for temperature profile and nanoparticle 

profile. 

 

The governing coupled non linear equations for this problem are written as 

N[ϕ(η)] = 𝜙 ′′′ + 𝜙𝜙  ′′ − Ha(𝜙 ′),                                                                                                            (21)         

                                                                                                                                                                 

N [ψ(η)] =
(3+4𝑅) 

𝑃𝑟
𝜓′′ +  𝜙𝜓′ +  𝑁𝑏 ξ′𝜓′ + 𝑁𝑡𝜓′²,                                                                                         (22)                 

 N [ 𝜉(η)] =  ξ′′ + Le 𝜙ξ′ +
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𝑁𝑏
𝜓′′.                                                                                                            (23)                                                                                   

 

For HAM solution an auxiliary linear operator for the equation (21), (22), (23) respectively as                   
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ConsiderLϕ[ϕ] = 0,  Lψ[ψ] = 0, Lξ[ξ] = 0 and using boundary conditions (16), (17), (18) for 𝞍, 𝝍, ξ we get the 

initial approximations are ϕ
0

(η), Ψ0(η), ξ
0

(η) as 
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As p varies from 0 to 1, the solution ϕ
0

(η), Ψ0(η), ξ
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(η) varies from the initial guess to the exact solution ϕ(η) 

, ψ(η), ξ(η).  
 

Homotopy equations for (27), (28), (29) are constructed as below 
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When p=0 and p=1 we have 

 A(η, 0) = ϕ
0

(η)     A(η, 1) = ϕ(η),                                                                       (31)                                                                                    

B(η, 0) = ψ
0

(η)     B(η, 1) = ψ(η),                                                                                                       (32)                         

D(η, 0) = ξ
0

(η)      D(η, 1) = ξ(η).                                                                                                        (33) 

 

Obviously conditions are,   

A(0, p) = 0, Aη(0, p) = λ,  Aη(∞, p) = 1,                                                                                  (34)                                                                                          

B(0, p) = 1, B(∞, p) = 0,                                                                                                          (35)                        

D(0, p) = 1, D(∞, p) = 0.                                                                                                                         (36) 

 

Applying Maclaurin’s series expansion to A(η, p), B(η, p) and D(η, p) and using initial approximation (25)-(27) we 

get                                          
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A(η, p) =  𝑓0(η) + ∑ 𝑓k(η)pk∞
k=1 ,                                                                                                           (37)         

B(η, p) =  θ0(η) + ∑ θk(η)pk,∞
k=1                                                                                                            (38)  

D(η, p) =  φ
0

(η) + ∑ φ
k

(η)pk∞
k=1 .                                                                                                          (39)   

 

The convergence region of the above series depends upon the auxiliary linear operator L, and the non-zero auxiliary 

parameter h which are to be selected such that solution converges at p = 1.  

ϕ(η) =  𝑓0(η) + ∑ 𝑓m(η),∞
k=1                           (40)                                                                                                 

ψ(η) =  θ0(η) + ∑ θm(η),∞
k=1                                                                                                                    (41) 

ξ(η) =  φ
0

(η) + ∑ φ
m

(η).∞
k=1                                                                                                                    (42) 

 

 Differentiating equation (28), (29) and (30) m times about the embedding parameter p, using Leibnitz theorem, 

setting p = 0 and dividing by m!  We get   

L[𝑓m − χ
m

𝑓m−1] = hRm(η),                                                                                                                (43)                                                                                                

L[θm − χ
m

θm−1] = hSm(η),                                                                                                                   (44) 

 L[φ
m

− χ
m

φ
m−1

] = hTm(η).                                                                                                                  (45) 

 

where   χ
m

= {
0        when m ≤ 1
1        when m > 1

       and   

Rm(η) = 𝑓m−1
′′′ (η) + ∑ 𝑓m−1−k(η) 𝑓k

′′(η)m−1
k=0 − Ha𝑓m−1

′ (η),                                                                 (46) 

Sm(η) = (
3+4R

Pr
) θm−1

′′ (η) + ∑ 𝑓m−1−k(η)θk
′ (η)m−1

k=0 + Nb ∑ φ
m−1−k
′ (η)θk

′ (η)m−1
k=0 −

                  Nt ∑ θm−1−k
′ (η)θk

′ (η)m−1
k=0 ,                                                                                                        (47) 

Tm(η) = φ
m−1
′′ (η) + Le ∑  𝑓m−1−k(η) ξ

k
′ (η)m−1 

k=0 +
Nt

Nb
θm−1

′′ (η),                                                            (48) 

 

with boundary conditions                                                                                                                   

   𝑓m(0) = 0 𝑓m
′ (0) = 0 𝑓m

′ (∞) = 0,                                                                                                            (49) 

θm(0) = 0, θm(∞) = 0,                                                                                                                            (50) 

φ
m

(0) = 0, φ
m

(∞) = 0.                                                                                                                            (51) 

 

We solve these non-linear equations given by (43), (44) and (45) for 𝑓m, θm, φ
m

 by MATHEMATICA. For the 

given equations we get the solution for the different characteristic parameters we analyze the solutions through 

graphs. 

 

 

IV. RESULT AND DISCUSSION 
 

The solutions for the (46)-(48) system of equation with corresponding boundary conditions are obtained by 

homotopy analysis method. With the help of Mathematica equations are solved and discussed through graphs. The 

convergence of the equation depends on varying auxiliary linear operator L, auxiliary parameter h and initial 

solution. The velocity profile 𝛟′(𝛈) of nanofluid decreases by increase in the value of Hartman number Ha as 

depicted in fig3. In fig 4 we observed that by increase in the value of velocity parameter λ the fluid velocity 

increases. Fig5 gives the effect of Hartman number Ha on the temperature profile 𝛙(𝛈), which increases with the 

increase in the value of magnetic field parameter Ha, here the applied magnetic field tends to heat the fluid which 

reduces the heat transfer from the wall. Whereas The effect of magnetic field parameter Ha lowers the value of 

nanoparticle volume fraction as in fig 9. In fig 6 Temperature profile 𝛙(𝛈) increases by increase in the value of 

radiation parameter R, the thermal radiation enhances the thermal diffusion. In fig 7 and fig 8   we notice, the 

influence of thermophorosis parameter Nt and of Brownian motion parameter Nb enhance the temperature 𝛙(𝛈)  of 

the nanofluid. Whereas increases in the value of Lewis number Le results in thinning of the boundary layer which 

can be shown in fig 10. In fig 11 increase in the value of thermophorosis parameter Nt   increases the nanoparticle 

volume fraction profile. 

 

V. CONCLUSION 
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Present study we have applied HAM where the solution exactly matching with numerical result obtained by 

previous [36] author in which spectral relaxation method is applied directly to ODE. Here we observed that the semi 

analytical method HAM works well for non-linear differential equations 

 

VI. GRAPHS 

 
Figure 2 h-curve for velocity profile 

 

 
Fig3. Velocity profiles for different values of Ha 

 

Fig4. Velocity profiles for different values of λ 
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Fig5. Temperature distribution for different values of Ha 

 

Fig6 Temperature distribution for different values of R 

 

 
 

 
Fig7. Temperature distribution for different values of 𝑵𝒕 

 

 

 

 
Fig8 Temperature distribution for different values of 𝑵𝒃 
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Fig9. Nano particle fraction  for different values of Ha 

 
Fig10. .  Nano particle fraction  for different values of Le 

 

 
Fig11. Nano particle fraction for different values of  𝑵𝒕 

 

Nomenclature: 

u    Velocity components along the x-axis                                    v  Velocity components along the y-axis,   

ν     Kinematic viscosity coefficient,                                             k  Thermal conductivity,  

𝐷𝐵  Brownian diffusion coefficient,                                            𝐷𝑇  Thermophoresis diffusion coefficient, 

 B0   Uniform magnetic field strength of the base fluid,              σ    Electrical conductivity of the base fluid, 

α = k/(𝜌𝑐)𝑓 is the Thermal diffusivity of the fluid,                     Pr   Prandtl number      

Nt  Thermophoresis parameter                                                     Ha   Hartman number 

𝜏𝑤  Shear stress                                                                            R    Radiation parameter 

Le   Lewis number                                                                       𝑞𝑤  Heat flux  

𝑞𝑚 Mass flux                                                                                𝑞𝑟  Radiative heat flux 

Nb  Brownian motion parameter                               

τ     Ratio of the nanoparticle heat capacity and the base fluid heat capacity. 
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