
 
Data-Driven Storage Optimization for Digital Repositories Using Big Data Techniques 

 
Dr. Mariana Oliveira, Dr. Stefan Keller, Dr. Lucia Fernandez 

Department of Environmental Science, University of São Paulo, Brazil; 

Institute of Geophysics, ETH Zurich, Switzerland; 

Faculty of Earth Sciences, National Autonomous University of Mexico (UNAM), Mexico 

 
 

ABSTRACT 
Software Configuration Management (SCM) deals with various changes and evolution in the software. Each 

software comprises of thousands of versions. Individual versions need to be stored again and again. Every software 

keeps on evolving so we need to keep track on each evolution. Software engineer uses mining techniques to store 

and retrieve these kinds of data’s. This research paper deals with the design, and implementation of an efficient 

storage management for SCM repositories that facilitates a developer’s to store revisions of software changes using 

Map reduce Techniques. The main objective of this research work is at making the storing and retrieval process of 

SCM repositories easier. Storage of SCM repository keeps on increasing. SCM repository needs a processing 

technique to process those data before storing. Map reduce Technique is used to process those data in Divide and 

Conquer manner. It stores source code in the format of the graph so storing and retrieval process is much easier. It, 

in turn, reduces the storage whole SCM repository. Thus, an efficient storage system for SCM repositories is 

achieved and a prototype is discussed in this paper.  

 

Key words: SCM Mining, Repository, Big data, Divide and Conquer. 

I. INTRODUCTION 
 

Storage management system processes the data and stored for future retrieval. This system evolves through various 

stages, now developers are using software mining techniques for effective storage [1]. It is effective but it can’t 

handle large number of data. In order to make process effective we use map reduce techniques which process data in 

divide and conquer manner.  The existing system of storing and retrieval in SCM is performed by Versioning and 

Base lining it needs lot of storage to store the coding.  

 

Daniel Rodriguez, et al [2] presented a survey of the publicly available repositories and classify the most common 

ones as well as discussing the problems faced by researchers when applying machine learning or statistical 

techniques to them. Micheal Muller, et al [3] presented thesis is to design and implement a front-end plug-in for an 

existing software comprehension tool, the VIZZANALYZER, providing the capability to extract and analyze 

multiple versions and evolutional information of software systems from SCM repositories and to store the results. 

Thereby, the implemented solution provides the infrastructure for software evolution research.  

  

Filip Van Rysselberghe et al [4] makes an attempt to turn the software maintenance craft into a more disciplined 

activity, by mining for frequently applied changes in a version control system. 

 

II. BACKGROUND STUDY 

 
The Research and approaches that primarily examine a single version or release of a software system are excluded 

from this survey, as they typically do not directly address the issues of software evolution and change. For example, 

we felt work that focused on analyzing a single version, and just happened to use a data-mining technique for 

analysis, is not within the scope of this project. This type of investigation is research on analysis methods to support 

testing (or some other software engineering task) [6]. In other words, this is not a project for investigations applying 

data-mining techniques to software engineering problems, but rather a survey of investigations that examine the 

changes and evolution of software and use data mining and other similar techniques. In a very few cases, we have 

included work that presented techniques that could readily be applied to multiple versions but was only applied to a 

single version.  

Haut | ISSN: 0938 - 2216 | Vol. 23, Issue 2 | 2025

https://hautpeerreview.top/ | Page No : 1



These are included for completeness and typically represent important contributions to the study of software 

repositories. Rather than data mining for storing and retrieval purpose we able to new techniques such as Map- 

Reduce Technique. 

 

III. PROPOSED METHODOLOGY 

 
System architecture is the conceptual model that defines the structure and/or behavior of the system. It provides a 

way in which products can be procured, systems can be developed an architectural overview of the overall system. 

The architecture diagram tells about the rough design of the implementation it helps us know how the system will 

react to the inputs, it shows concept how the system behaves for each and every input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Proposed System Architecture 

Map Reduce 

MapReduce is a framework used for implementation of processing and generating large data sets with a parallel, 

distributed clustering algorithm on a cluster [5].  

• Search through large datasets  

• Map: extract the associative data  

• Shuffle the data and clusters  

• Reduce the output  

• Generate results  

 

Prototypical Map reduce Example  

Input: a set of large data sets  

Apply two functions:  

Map (s,p) → list (s1,p1)  

Reduce (s1, list (p1)) → p2  

(s1, p1) is an intermediate result  

Output is the set of (s1, p2) sets 

 

IV. CONCLUSION  

 

SCM Repository 

Files 

Map Reduce 

Graph Database 

Source Code Retrieval 

Analysis 

Storage 

Haut | ISSN: 0938 - 2216 | Vol. 23, Issue 2 | 2025

https://hautpeerreview.top/ | Page No : 2



The primary goal of this research work is to reduce the size and storage process needed to store source code in the 

SCM repository. In this phase for each versions code have been appended to produce new ones. This process 

enables developer to store without repetition. Map- Reduce is the best programming model for processing large 

datasets. It has different level of optimization it makes storing and retrieving process efficient. 

 

REFERENCE 

1. Van Rysselberghe F, Demeyer S. Mining version control systems for FACs (frequently applied changes). 

Proceedings 1stInternational Workshop on Mining Software Repositories (MSR’04). IEE: Stevenage, 2004; 

pp 48–52.  

2. Zimmermann T, Zeller A,Weigerber P, Diehl S. Mining version histories to guide software changes. IEEE 

Transactions on Software Engineering 2005; pp 429–445.  

3. Ying ATT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source code changes by mining change history. 

IEEE Transactions on Software Engineering 2004; pp 574–586.  

4. Livshits B, Zimmermann T. DynaMine: Finding common error patterns by mining software revision 

histories. Proceedings 13th International Symposium on Foundations of Software Engineering 

(ESEC/FSE’05). ACM Press: New York NY, 2005; pp 296–305.  

5. Kagdi H, Yusuf S, Maletic JI. Mining sequences of changed-files from version histories. Proceedings 3rd 

International Workshop on Changes of softwares  

6. Robles G, Gonz´alez-Barahona JM, Michlmayr M, Amor JJ. Mining large software compilations over time: 

Another perspective of software evolution. Proceedings 3rd International Workshop on Mining Software 

Repositories (MSR’06). ACM Press: New York NY, 2006; pp 3–9. 
 

Haut | ISSN: 0938 - 2216 | Vol. 23, Issue 2 | 2025

https://hautpeerreview.top/ | Page No : 3


