
AN IMPLICIT NUMERICAL SCHEME FOR FRACTIONAL ADVENTION 

DIFFUSION EQUATION 

 
S. M. Chithra, V. Kamalakannan 

Department of Mathematics, R.M.K College of Engineering and Technology, Chennai, Tamil Nadu, India 
 

ABSTRACT 
In this paper, a finite difference scheme is presented for time fractional advection diffusion equation (TFADE). This 

equation is derived from classical advection diffusion equation with variable coefficients on replacing classical 

integer order derivatives by their fractional counterpart. An advection diffusion equation describes physical 

phenomenon where particle, energy or other physical quantities are transferred inside a physical system due to 

combined effect of advection and diffusion. To address anomalous diffusion like sub diffusion or super diffusion, 

classical integer derivatives are replaced by corresponding fractional derivative to obtain TFADE. Using central 

difference approximations for both space and time fractional derivatives, it is found the present numerical scheme is 

unconditionally stable. 
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I. INTRODUCTION 

 
Fractional Calculus has find its applications in various field of sciences and engineering viz. fluid dynamics, 

hydrology, acoustic field etc. along with commercial fields such as finance and marketing. Differential equations of 

arbitrary order (i.e. fractional order) had been used widely to model various systems, material processes, physical 

and chemical phenomenon. Apart from integer order derivatives, fractional order derivatives address various 

anomalous phenomenon like sub diffusion and super diffusion. Many attempts are made to find out analytical as 

well as numerical solution of fractional partial differential equations (FPDE) governing  these phenomenon. Among 

these, sub diffusion and super diffusion processes occurring due to fractional derivative, are studied by many authors 

(e.g. [2], [3], [10], [12], [14], [15] ). Langland and Henry [8] developed numerical algorithm for time fractional 

diffusion equation of the form
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.  Considering Riemann Liouville fractional derivative, 

Yuste [13] proposed weighted average finite difference method for force free diffusion equation represented by
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. For 10  , Murio [11] developed  unconditionally stable fully implicit 

scheme for time fractional diffusion equation of the form
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in the space domain  10  x  

Ding and  Li [5] presented a class of weighted finite difference methods for numerical solution of space fractional 

diffusion equation. Spectral methods based numerical scheme was presented by Lin and Xu [9]. Liu and Yang [10] 

proposed a numerical method for anomalous sub diffusion equation having a non linear source term. Zhang et.al 

[14] presented an unconditionally stable finite difference scheme for space time fractional convection diffusion 

equation of the form ).(
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with with initial 

and boundary conditions given by u(0,t)=u(L,t)=0. Meerschaert et.al. [12] presented finite difference scheme for 

fractional equation on two time scales. Zhang et.al [15] carried out estimation of error by using fully discrete scheme 

based on reduction of order. By transforming partial differential equations into an equivalent partial integro 

differential equation, Huang et.al. [6] constructed two finite difference schemes for time fractional diffusion wave 

equations. Zhi et.al [4] discussed numerical scheme for one dimensional fractional advection dispersion equation of 

the form 
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. Yang et.al. [6] proposed a meshless implicit method for 2D time dependent 

fractional diffusion wave equation. Using fractional shifted Legendre polynomial method, hybrid numerical scheme 
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was proposed by Krishnveni et.al [7]. By using an approximation to Reisz fractional derivative, Arshad et.al.[1] 

presented a finite difference scheme to obtain the numerical solution of time space fractional advection diffusion 

equation of the form ),(),(),(),(
2
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 .  The advection 

diffusion equation is generally used to model many physical, chemical biological, oceanographic and meteorological 

processes. The general form of the advection-diffusion equation is ,
2
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 where ),( txu represents 

scalar fields like temperature or concentration, ),( txv  represents adjective fluid velocity and K is diffusion 

constant. In the present paper, unconditionally stable fully implicit numerical scheme is presented for time fractional 

advection diffusion equation (TFADE) of the form 
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On simplification, (1) gets converted into 
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To the best of our knowledge no numerical scheme is proposed for this form of advection diffusion equation. In the 

present scheme, space domain is restricted to [0,1]. Along with initial conditions, Dirichlet Boundary conditions are 

used. 

 

II. NUMERICAL SOLUTION OF TFADE 
 

This section deals with the numerical approximation of TFADE using Caputo fractional time derivative order 

10   given by 
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Let h and k be the mesh size in space and time respectively such that h=1/M and k=1/N, where M,N represent 

number of subintervals in space and time partition respectively. With these implications spatial grid points are given 

by $x_{j}=jh$ where j=0,1,...,M and grid points in time interval [0,1]are given by rktr =  where ....,1,0 TNr =

Numerical approximation of the solution of TFADE at each grid point is given by ),( rj
r
j txuu = whereas the 

value of function f at ),( rj tx  is denoted by ).( jj xff = Now we discretize (2) on grid points ),( rj tx , we have 
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Using numerical approximation to time fractional derivative of first order as suggested by Murio [11] we have 

)4()(
),(

kOuD
t

txu
r
jt

rj
+=










 

 

Where 
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Using central difference approximations to 
2

2

,,
x

u

x

v

x

u












, we have 

)6()(
2

),(),(),(
211

hO
h

txvtxv

x

txv rjrjrj
+

−
=



 −+
 

)7()(
2

),(),(),(
211

hO
h

txutxu

x

txu rjrjrj
+

−
=



 −+

 

)8()(
),(),(2),(),(

2

2

11

2

2

hO
h

txutxutxu

x

txu rjrjrjrj
+

+−
=



 +−

 

 

If 
r
jU  and 

r
jV  denote the numerical approximations of ),( rj txu and ),( rj txv  respectively, then substituting 

equations (6), (7) and (8), equation (3) reduces to 
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With boundary conditions 00 == n
M

n UU and initial conditions 1...,2,1,0 −== MjforfU jj  

 

 

 

 

 

III. STABILITY ANALYSIS OF NUMERICAL SCHEME 
 

For stability analysis, equation is reconstituted as follows 
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If n=1, then r=1 and we have 
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If we put 
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If r=3, then 
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Continuing like this, we have 0 nn k . Let }....,,,1max{ 321 nkkkkk == Then .0 kn   This shows 

that the numerical solution is bounded by initial conditions which in turns asserts unconditional stability. 

 

IV. CONCLUSION 
 

The numerical solution of time fractional advection diffusion equation is computed by taking space domain [0,1] 

and Dirichlet boundary conditions. On the basis of theoretical computations, it is established that the proposed 

scheme is fully implicit and unconditionally stable. 
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